The current view of inheritance taught in our schools and colleges is Mendelian. Darwin imagined inheritance to occur by a blending of the characters of each parent, but Mendel showed that inheritance was particulate—it was carried by discrete particles in discrete states. These particles became known as genes, and genes were eventually found to be coded segments on the DNA molecules that make up chromosomes in the nucleus of cells. Darwinists today view all of inheritance as genetic, and because genes can change more or less indefinitely, they identify this as the obvious means to explain how everything has evolved from something else during the supposed millions of years of life on Earth.
But Mendel’s work only explained the things that changed during inheritance, not the things that remained the same. For example, he used varieties of pea plants that had round or wrinkled, green or yellow seeds. He simply took for granted, and thus overlooked, the fact that the peas produced peas. Darwinists today still remain blind to this fact and insist that peas will eventually produce something other than peas, given enough time. There is certainly enormous variability in all forms of life, yet all our experiments in plant and animal breeding still show the same result—peas produce peas, dogs produce dogs and humans produce humans. This result is not consistent with Darwinian expectations....
Cellular inheritance
Genes can no longer be seen as the cause of biological inheritance because we now know that control over their expression (i.e. their being switched on and off when needed or not needed, respectively, and the timing of these events) comes from epigenetic mechanisms operating in the cell.6 This suggests that the DNA simply provides a ‘library’ of information and the use of that information is controlled not by the genes themselves but by the cell.
If the cell, and not the genes, control inheritance, then certain observations that puzzle Darwinists become explicable. For example, Australian rock hopper wallabies display an incredible array of chromosomal aberrations, yet all within a group of species that are so similar to one another that most people cannot tell them apart.7 The chromosomes have been grossly scrambled, yet the cell is still able to extract the information it needs for survival. If the genes had been in control during such a scrambling process, Darwinists would expect it to take about a hundred million years, but the evidence suggests quite recent divergence of these species.
A similar pattern of cell stability in the face of genome change is constantly at work in bacteria. It has been found that new gene sequences are continually being brought into bacterial cells and spliced into the bacterial genome.8 The bacterial genome does not keep getting bigger, however, because it also has a complementary method of getting rid of unwanted or useless sequences. The result is that the bacterium is continually ‘sampling’ its genetic environment, looking for new gene sequences that might be useful in the ever-changing world around it. Throughout all this change, the bacterium maintains its integrity as a bacterium. For example, a study of the bacterium Escherichia coli over 10,000 generations found that at the end, ‘almost every individual had a different genetic fingerprint’, yet they were still Escherichia coli.9 Only if the cell is in control can we explain these observations.